
Combinatorics in Banach space theory (MIM UW 2014/15)
PROBLEMS (Part 2)

PROBLEM 2.1. Give a (short) proof of the following statement, called Rosenthal’s lemma
(1970): Let Σ be a σ-algebra of subsets of Ω and (µn)∞n=1 a uniformly bounded sequence of
finitely additive, non-negative measures on Σ. Then, for every pairwise disjoint sequence
(En)∞n=1 ⊂ Σ and every ε > 0 there exists a strictly increasing sequence of indices (nk)∞k=1
such that

µnk

⋃
j 6=k

Enj

 < ε for each k ∈ N.

Hint. Take any partition
⋃∞
p=1Mp of N consisting of pairwise disjoint infinite subsets of N and

consider two cases; (a): when there is p ∈ N for which µk(
⋃
j∈Mp, j 6=k Ej) < ε for every k ∈Mp,

and (b): otherwise.

PROBLEM 2.2. Use Rosenthal’s lemma in order to give a (relatively short) proof of
Phillips’ lemma (1940): Let (µn)∞n=1 be a uniformly bounded sequence of finitely additive,
scalar-valued measures on 2N. If for every set E ⊂ N we have limn→∞ µn(E) = 0, then

lim
n→∞

∞∑
k=1

|µn({k})| = 0.

Remark. In fact it is enough to assume that each µn is bounded, since then the uniform boun-
dedness follows from the so-called Nikodým boundedness principle.

PROBLEM 2.3. By using Phillips’ lemma, show that `1 has the Schur property (that is,
weakly convergent sequences converge in norm).

PROBLEM 2.4. Verify that Phillips’ lemma may be equivalently stated by saying that
the canonical projection π : c∗∗∗0 → c∗0 is sequentially weak∗-to-norm continuous. By the
canonical projection (called also the Dixmier projection) from X∗∗∗ onto X∗ we mean the
one given by π(x∗∗∗) = x∗∗∗|j(X), where j : X → X∗∗ is the canonical embedding. We say
that a Banach space X has the [weak] Phillips property whenever the Dixmier projection
from X∗∗∗ onto X∗ is sequentially weak∗-to-norm [weak∗-to-weak] continuous. Show
that for every Banach space X with the weak Phillips property the dual X∗ is weakly
sequentially complete (that is, every weakly Cauchy sequence is weakly convergent).
Remark. In view of this assertion, we may say that Phillips’ lemma is responsible for `1 being
weakly sequentially complete.

PROBLEM 2.5. Let X be a Banach space. Show how Rosenthal’s `1-theorem implies that
each of the following two assumptions:

(a) X is weakly sequentially complete and non-reflexive,
(b) X is infinite-dimensional with the Schur property,

forces X to contain an isomorphic copy of `1.

PROBLEM 2.6. Explain why the (part of the) Odell–Rosenthal theorem may be as well
stated in the following way: A separable Banach space X does not contain an isomorphic
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copy of `1 if and only if every bounded set A ⊂ X is sequentially weak∗ dense in its
weak∗ closure (in X∗∗). (The difference between this formulation and the one discussed
during lectures is that we allow A to be any bounded set, not necessarily BX .) Decide
whether such a statement holds true if we drop the word ‘bounded’.

PROBLEM 2.7. By the Bourgain–Fremlin–Talagrand theorem (1978), for every separable
Banach space X the condition that `1 ↪→ X (and hence any on the list by Odell and
Rosenthal) is equivalent to (BX∗∗ , w

∗) containing a homeomorphic copy of βN. Verify
this statement, by giving concrete constructions of copies of βN, in the following two
cases:

(a) X = `1,
(b) X = C[0, 1] (here, `1 ↪→ X follows from the Banach–Mazur theorem).

Remark. The proof that `1 ↪→ X implies βN ↪→ (BX∗∗ , w
∗) homeomorphically requires the

following deep statement, called Rosenthal’s dichotomy: given a pointwise bounded sequence
(fn)∞n=1 of continuous functions on a Polish space D, either it contains a pointwise convergent
subsequence, or a subsequence whose closure in RD is homeomorphic to βN (consult, e.g.,
Chapter 1 in [S. Todorcevic, Topics in Topology, Springer 1997]). The proof of the converse
implication is very easy: card(βN) = 2c, while Odell and Rosenthal have already taught us that
the latter condition is equivalent to `1 ↪→ X .

PROBLEM 2.8. Let X be a separable Banach space. Prove that `1 ↪→ X if and only if
C[0, 1] is isomorphic to a quotient of X. Next, give an example showing that this is no
longer true for non-separable spaces.
Hint. You can use the fact that `1 is a projective object in the category of Banach spaces, that
is, it enjoys the following lifting property (quite easy to prove): For all Banach spaces X and Y
for which there is a surjective operator T : X → Y , and for every operator U : `1 → Y there
exists a lifting of U , i.e. an operator S : `1 → X satisfying TS = U .

In the proof of the ‘if’ part you may use the following Pełczyński theorem: If a separable
Banach spaceX contains a subspace Y isomorphic to C[0, 1], then Y contains a further subspace
Z that is still isomorphic to C[0, 1] and also complemented in X .
Remark. This was proved by Pełczyński in 1968 and gives a very efficient way of producing some
badly behaved sets in the dual of a Banach space containing `1. You shall see it in the next few
exercises which provide some interesting consequences of the Odell–Rosenthal theorem.

PROBLEM 2.9. Let X be a Banach space. Recall that given bounded sets B ⊆ C ⊂ X∗

we call B a James boundary of C provided that for every x ∈ X there exists f0 ∈ B so
that

f0(x) = sup{f(x) : f ∈ C}.
Moreover, B ⊂ BX∗ is called a James boundary of X if it is a James boundary of BX∗.
Prove the following statements:

(a) The set ext(C) of extreme points of C forms a James boundary of C, whenever
C ⊂ X∗ is w∗-compact;

(b) There is a James boundary B (for example, in the space `1(Γ) with Γ uncountable)
such that B ∩ ext(BX∗) = ∅;

(c) On the other hand, if B is a James boundary of any Banach space X, then
ext(BX∗) ⊆ B

w∗
.
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PROBLEM 2.10. Let X be a separable Banach space. Prove that the following assertions
are equivalent:

(i) `1 6↪→ X;
(ii) for every closed, convex and bounded set C ⊂ X∗ we have the equivalence: C is

w∗-compact iff every x ∈ X (regarded as a functional on X∗) attains its supremum
on C.

Hint. (1) Of course, in view of the Banach–Alaoglu theorem, the proof of ‘(i)⇒ (ii)’ is all about
the weak∗ closedness of C. Use the Hahn–Banach separation theorem and Simon’s inequality
which reads as follows: If B ⊂ X∗ is a boundary of some bounded set in X∗ and (xn)∞n=1 ⊂ X
is any bounded sequence, then

sup
y∗∈B

(
lim sup
n→∞

〈xn, y∗〉
)
> inf

{
sup
B
x : x ∈ conv{xn}∞n=1

}
.

Observe that the assumption of the ‘if’ part in the desired equivalence say nothing but C is its
own James boundary. (2) Apply Problem 2.8 and think about the set of all atomic probabilistic
measures on [0, 1].
Remark. The above statement characterizes Banach spaces for which the “weak∗-James the-
orem” holds true.

PROBLEM 2.11. By giving a concrete example, show that the assertion of Problem 2.10
is not true if we do not assume that X is separable.

PROBLEM 2.12. Let X be a separable Banach space. Prove that the following assertions
are equivalent:

(i) `1 6↪→ X;
(ii) for every weak∗ compact and convex set K ⊂ X∗ we have K = conv‖·‖(ext(K)).

Hint. (1) Use the Choquet representation theorem: If D is a metrizable, compact, convex subset
of a locally convex linear topological space E , then every point x0 ∈ D is representable by
some probability measure µ on D with support in ext(D), that is, for every ϕ ∈ E∗ we have
ϕ(x0) =

∫
D ϕ dµ. Recall also that (i) implies some nice properties for all functionals from X∗∗.

(2) Again, make use of Problem 2.8.
Remark. Note that if we replace the norm closure by the weak∗ closure in condition (ii) we get
nothing else but the Krein–Milman theorem which is true whether or not X contains `1.

PROBLEM 2.13. Let X be a Banach space not containing an isomorphic copy of `1. Show
that for every equivalent norm ‖·‖ on X the intersection of two 1-norming hyperplanes
of X∗ is again 1-norming. (Recall that Z ⊂ X∗ is called 1-norming whenever ‖x‖ =
supz∗∈Z z

∗(x) for each x ∈ X.)
Hint. Use the part of the Odell–Rosenthal theorem which says that in our situation every func-
tional from BX∗∗ is a Baire 1 function on the Polish space (BX∗ , w

∗), and combine it with the
Baire theorem saying that every Baire 1 function (defined on a metric separable space and with
values in a separable space) is continuous on some dense Gδ-subset of its domain.
Remark. The property of 1-norming hyperplanes stated above is also a sufficient condition for
X not containing `1. One can also replace the word ‘hyperplanes’ by ‘subspaces’. This was proved
by Godefroy and Kalton (1989).
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PROBLEM 2.14. Let X and Y be Banach spaces such that X∗ and Y ∗ are isometrically
isomorphic and contain no isomorphic copy of `1. Show that X and Y are isometrically
isomorphic.
Hint. X and Y may be viewed as subspaces of the same space Z∗, so that both X and Y are
preduals of Z. We then have Z∗∗ = Z ⊕ X⊥ = Z ⊕ Y ⊥ (why?). Use also the assertion of
Problem 2.13.
Remark. Of course, after dropping the assumption that X∗ and Y ∗ do not contain `1 the
assertion fails drastically—we know, for example, that `1 itself has uncountably many pairwise
non-isomorphic preduals.
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