Combinatorics in Banach space theory (MIM UW 2014/15)
PROBLEMS (Part 2)

PROBLEM 2.1. Give a (short) proof of the following statement, called Rosenthal’s lemma
(1970): Let X be a o-algebra of subsets of 2 and (11,,)$° ; a uniformly bounded sequence of
finitely additive, non-negative measures on Y. Then, for every pairwise disjoint sequence
(E,)52, C ¥ and every € > 0 there exists a strictly increasing sequence of indices (ng)72 4
such that

[, (U Enj) < e for each k € N.
7k

Hint. Take any partition U;il M, of N consisting of pairwise disjoint infinite subsets of N and

consider two cases; (a): when there is p € N for which 1 (Ujen,, j2 Ej) < € for every k € M,

and (b): otherwise.

PROBLEM 2.2. Use Rosenthal’s lemma in order to give a (relatively short) proof of
Phillips’ lemma (1940): Let (1,)32 ; be a uniformly bounded sequence of finitely additive,
scalar-valued measures on 2V, If for every set E C N we have lim,, ., s1,,(E) = 0, then

i 3 o (5))] = 0.

Remark. In fact it is enough to assume that each p, is bounded, since then the uniform boun-
dedness follows from the so-called Nikodym boundedness principle.

PROBLEM 2.3. By using Phillips’ lemma, show that ¢; has the Schur property (that is,
weakly convergent sequences converge in norm).

PROBLEM 2.4. Verify that Phillips’ lemma may be equivalently stated by saying that
the canonical projection 7: cj** — ¢ is sequentially weak*-to-norm continuous. By the
canonical projection (called also the Dizmier projection) from X*** onto X* we mean the
one given by 7(z***) = 2**|;(x), where j: X — X** is the canonical embedding. We say
that a Banach space X has the [weak] Phillips property whenever the Dixmier projection
from X*** onto X* is sequentially weak*-to-norm [weak*-to-weak| continuous. Show
that for every Banach space X with the weak Phillips property the dual X* is weakly
sequentially complete (that is, every weakly Cauchy sequence is weakly convergent).

Remark. In view of this assertion, we may say that Phillips’ lemma is responsible for /1 being

weakly sequentially complete.

PROBLEM 2.5. Let X be a Banach space. Show how Rosenthal’s /1-theorem implies that
each of the following two assumptions:

(a) X is weakly sequentially complete and non-reflexive,
(b) X is infinite-dimensional with the Schur property,

forces X to contain an isomorphic copy of /;.

PROBLEM 2.6. Explain why the (part of the) Odell-Rosenthal theorem may be as well
stated in the following way: A separable Banach space X does not contain an isomorphic



copy of ¢ if and only if every bounded set A C X is sequentially weak* dense in its
weak® closure (in X**). (The difference between this formulation and the one discussed
during lectures is that we allow A to be any bounded set, not necessarily By.) Decide
whether such a statement holds true if we drop the word ‘bounded’.

PROBLEM 2.7. By the Bourgain—Fremlin—Talagrand theorem (1978), for every separable
Banach space X the condition that ¢; < X (and hence any on the list by Odell and
Rosenthal) is equivalent to (Bx«,w*) containing a homeomorphic copy of SN. Verify
this statement, by giving concrete constructions of copies of SN, in the following two
cases:

(a) X = 51,
(b) X = C0,1] (here, ¢; — X follows from the Banach-Mazur theorem).

Remark. The proof that ¢; < X implies SN < (Bx++,w") homeomorphically requires the
following deep statement, called Rosenthal’s dichotomy: given a pointwise bounded sequence
(fn)o2, of continuous functions on a Polish space D, either it contains a pointwise convergent
subsequence, or a subsequence whose closure in R” is homeomorphic to SN (consult, e.g.,
Chapter 1 in [S. Todorcevic, Topics in Topology, Springer 1997]). The proof of the converse
implication is very easy: card(GN) = 2¢, while Odell and Rosenthal have already taught us that
the latter condition is equivalent to ¢; — X.

PROBLEM 2.8. Let X be a separable Banach space. Prove that ¢; — X if and only if
C'0, 1] is isomorphic to a quotient of X. Next, give an example showing that this is no
longer true for non-separable spaces.

Hint. You can use the fact that ¢; is a projective object in the category of Banach spaces, that
is, it enjoys the following lifting property (quite easy to prove): For all Banach spaces X and Y
for which there is a surjective operator T: X — Y, and for every operator U: {; — Y there
exists a lifting of U, i.e. an operator S: {1 — X satisfying T'S = U.

In the proof of the ‘if part you may use the following Pelczynski theorem: If a separable
Banach space X contains a subspace Y isomorphic to C[0, 1], then Y™ contains a further subspace
Z that is still isomorphic to C[0, 1] and also complemented in X.

Remark. This was proved by Petczynski in 1968 and gives a very efficient way of producing some
badly behaved sets in the dual of a Banach space containing ¢;. You shall see it in the next few
exercises which provide some interesting consequences of the Odell-Rosenthal theorem.

PROBLEM 2.9. Let X be a Banach space. Recall that given bounded sets B C C' C X*
we call B a James boundary of C' provided that for every x € X there exists fy € B so
that

fo(z) =sup{f(x): feC}.
Moreover, B C Bx- is called a James boundary of X if it is a James boundary of Bx-.
Prove the following statements:

(a) The set ext(C') of extreme points of C' forms a James boundary of C, whenever
C C X* is w*-compact;

(b) There is a James boundary B (for example, in the space ¢;(I") with I" uncountable)
such that B Next(Bx«) = &;

(c) On the other hand, if B is a James boundary of any Banach space X, then
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ext(Byx:) C B



PROBLEM 2.10. Let X be a separable Banach space. Prove that the following assertions
are equivalent:

(i) b4 X;
(ii) for every closed, convex and bounded set C' C X* we have the equivalence: C' is
w*-compact iff every z € X (regarded as a functional on X*) attains its supremum

on C.

Hint. (1) Of course, in view of the Banach—Alaoglu theorem, the proof of ‘(i) = (ii)’ is all about
the weak™ closedness of C'. Use the Hahn—Banach separation theorem and Simon’s inequality
which reads as follows: If B C X* is a boundary of some bounded set in X* and (2,,)5>, C X
is any bounded sequence, then

sup (lim sup (x,, y*>) > inf {supx: x € conv{xn}ff_l}.
y*eB n—00 B

Observe that the assumption of the ‘if part in the desired equivalence say nothing but C' is its
own James boundary. (2) Apply Problem 2.8 and think about the set of all atomic probabilistic
measures on [0, 1].

Remark. The above statement characterizes Banach spaces for which the “weak”-James the-
orem” holds true.

PROBLEM 2.11. By giving a concrete example, show that the assertion of Problem 2.10
is not true if we do not assume that X is separable.

PROBLEM 2.12. Let X be a separable Banach space. Prove that the following assertions
are equivalent:

(i) b X

(ii) for every weak* compact and convex set K C X* we have K = conv!'ll(ext(K)).

Hint. (1) Use the Choquet representation theorem: If D is a metrizable, compact, convex subset
of a locally convex linear topological space &, then every point xq € D is representable by
some probability measure © on D with support in ext(D), that is, for every ¢ € £* we have
©(xo) = [p @ dp. Recall also that (i) implies some nice properties for all functionals from X**.
(2) Again, make use of Problem 2.8.

Remark. Note that if we replace the norm closure by the weak® closure in condition (ii) we get
nothing else but the Krein—Milman theorem which is true whether or not X contains /1.

PROBLEM 2.13. Let X be a Banach space not containing an isomorphic copy of ¢;. Show
that for every equivalent norm ||-|| on X the intersection of two 1-norming hyperplanes
of X* is again l-norming. (Recall that Z C X* is called 1-norming whenever |z| =
SUp,-c 5 2" (x) for each z € X.)

Hint. Use the part of the Odell-Rosenthal theorem which says that in our situation every func-
tional from Bx~, is a Baire 1 function on the Polish space (Bx+,w"), and combine it with the
Baire theorem saying that every Baire 1 function (defined on a metric separable space and with
values in a separable space) is continuous on some dense Gs-subset of its domain.

Remark. The property of 1-norming hyperplanes stated above is also a sufficient condition for

X not containing £1. One can also replace the word ‘hyperplanes’ by ‘subspaces’. This was proved
by Godefroy and Kalton (1989).



PROBLEM 2.14. Let X and Y be Banach spaces such that X* and Y* are isometrically
isomorphic and contain no isomorphic copy of ¢;. Show that X and Y are isometrically
isomorphic.

Hint. X and Y may be viewed as subspaces of the same space Z*, so that both X and Y are
preduals of Z. We then have Z** = Z & X+ = Z ® Y (why?). Use also the assertion of
Problem 2.13.

Remark. Of course, after dropping the assumption that X* and Y* do not contain ¢; the
assertion fails drastically—we know, for example, that ¢; itself has uncountably many pairwise
non-isomorphic preduals.



